Math 261
 Fall 2023

Lecture 22

Feb 19-8:47 AM

Class QE 10
find equation of the tangent line in Slope -Int. form to the graph of $f(x)=\sqrt[3]{x}-2$ at $x=8$. $(8,0)=\frac{1}{m}=\frac{1}{3 \sqrt[3]{8^{2}}}=\frac{1}{3 \sqrt[3]{64}}=\frac{1}{12}$ $f(x)=\sqrt[3]{x}-2 \quad f(x)=x^{1 / 3}-2$

$$
f^{\prime}(x)=\frac{1}{3} x^{1 / 3-1}-0=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}}=\frac{1}{3 \sqrt[3]{x^{2}}} / J
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-0=\frac{1}{12}(x-8) \rightarrow y=\frac{1}{12} x-\frac{8}{12} \rightarrow \underset{\text { Final }}{y=\frac{1}{12} x-\frac{2}{3}}
$$

Answer

$$
\begin{aligned}
& \text { Prove } \frac{d}{d x}\left[x^{4}\right]=4 x^{3} \\
& \begin{aligned}
f(x)=x^{4} \\
\begin{aligned}
\frac{d}{d x}\left[x^{4}\right] & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}-x^{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right)}{h h^{2}} \\
& =\lim _{h \rightarrow 0}\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right) \\
& =4 x^{3}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prove } \frac{d}{d x}[\csc x]=-\csc x \cot x \\
& f(x)=\csc x=\frac{1}{\sin x} \\
& \frac{d}{d x}[\csc x]=\frac{d}{d x}\left[\frac{1}{\sin x}\right]=\lim _{h \rightarrow 0} \frac{\frac{1}{\sin (x+h)}-\frac{1}{\sin x}}{h} \quad \text { LCD } \sin (x+h) \cdot \sin x \\
& =\lim _{h \rightarrow 0} \frac{\sin x-\sin (x+h)}{h \sin x \cdot \sin (x+h)}>\sin x \cosh h \cos x \sin h \\
& =\lim _{h \rightarrow 0} \frac{\sin x-\sin x \cos h-\cos x \sin h}{h \sin x \sin (x+h)} \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin x(1-\cos h)}{h \sin x \sin (x+h)}-\frac{\cos x \sin h}{h \sin x \sin (x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1 \cos ^{\pi 0}}{h} \cdot \lim _{h \rightarrow 0} \frac{1}{\sin (x+h)}-\lim \frac{\sin h}{h \rightarrow 0} \cdot \lim _{h \rightarrow 0} \frac{\cos x}{\sin x \cdot} \frac{\sin (x) 0}{} \\
& =0 \cdot \frac{1^{\infty 0}}{\sin x}-1 \cdot \frac{\cos x}{\sin x \cdot \sin x}=-\frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} \\
& -\csc x \cdot \cot x \\
& \begin{array}{lr}
\frac{d}{d x}[\sin x]=\checkmark & \frac{d}{d x}[\operatorname{coc} x]= \\
\begin{array}{ll}
\frac{d}{d x}[\cos x] & =\checkmark \\
\frac{d}{d x}[\tan x] & =\checkmark
\end{array} & * \frac{d}{d x}[\sec x]= \\
\frac{d}{d x}[\cot x]= & \checkmark
\end{array}
\end{aligned}
$$

> find the equation of the normal line to the graph of $f(x)=\operatorname{Sec} x$ at $x=\pi / 4$.

$$
\begin{aligned}
& f^{\prime}(x)=\sec x \tan x \\
& f^{\prime}\left(\frac{\pi}{4}\right)=\operatorname{Sec} \frac{\pi}{4} \cdot \tan \frac{\pi}{4}=\sqrt{2} \cdot 1=\sqrt{2} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-\sqrt{2}=\frac{-\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right) \\
& y=\frac{-\sqrt{2}}{2} x+\frac{\pi \sqrt{2}}{8}+\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Evaluate } \lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+4}} \\
& \text { If } x=-100 \\
& \Rightarrow \frac{-100}{\sqrt{(-100)^{2}+4}} \approx-.99980006 \\
& \text { If } x=-1000 \\
& \Rightarrow \frac{-1000}{\sqrt{(-1000)^{2}+4}} \approx-.999998 \\
& \text { as } x \rightarrow \infty, x=\sqrt{x^{2}} \text { but as } x \rightarrow-\infty, x=\sqrt{x^{2}} \\
& \text { If } x=-10,-10=-\sqrt{(-10)^{2}}=-\sqrt{100}=-10 \sqrt{ } \\
& \lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+4}}=\lim _{x \rightarrow \infty} \frac{\frac{x}{x}}{-\sqrt{\frac{x^{2}+4}{x^{2}}}}=\lim _{x \rightarrow-\infty} \frac{1}{-\sqrt{1+\frac{4 x}{x^{2}}}} \\
& =\frac{1}{-\sqrt{1+0}}=\frac{1}{-1}=-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Evaluate } \lim _{x \rightarrow-\infty} \frac{8-3 x}{\sqrt{36 x^{2}-10 x}} \quad \frac{\infty}{\infty} \text { InF. } \\
& \text { Since } x \rightarrow-\infty \text {, then } x=-\sqrt{x^{2}} \\
& \lim _{x \rightarrow-\infty} \frac{\frac{8-3 x}{x}}{\frac{\sqrt{36 x^{2}-10 x}}{x}}=\lim _{x \rightarrow-\infty} \frac{\frac{8}{x}-\frac{3 x}{x}}{\frac{\sqrt{36 x^{2}-10 x}}{-\sqrt{x^{2}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{8}{x}-3}{-\sqrt{\frac{36 x^{2}-10 x}{x^{2}}}}=\lim _{x \rightarrow-\infty} \frac{\frac{8}{x}-3}{-\sqrt{36-\frac{10}{x}} 0} \\
& \begin{array}{l}
\quad=\frac{-3}{-\sqrt{36}}=\frac{3}{6}=\frac{1}{2} \\
\text { If } x=-100 \\
\Rightarrow \frac{8-3(-100)}{\sqrt{36 \cdot(-100)^{2}-10(-100)}}=\frac{.5}{2}+40477851
\end{array} \\
& \operatorname{try} x=-1000 \Rightarrow\{=5012637182
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prove } \frac{d}{d x}[f(x) \cdot g(x)]=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) \\
& \frac{d}{d x}[f(x) \cdot g(x)]=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 2} \frac{f(x+h)-f(x+h)-(x)] g(x) \text { (Ex) } g(x+h)}{} \\
& h \rightarrow 0 \\
& \text { h } \\
& =\lim _{h \rightarrow 0} \frac{g(x+h) \cdot[f(x+h)-f(x)]}{h}+\lim _{h \rightarrow 0} \frac{f(x)[-g(x)+g(x, x)]}{h} \\
& =\lim _{h \rightarrow 0} g(x+h)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} f(x) \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =g(x+0) \cdot f^{\prime}(x)+f(x) \cdot g^{\prime}(x) \\
& =f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) \\
& \text { make sure to try to Prove } \\
& \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}
\end{aligned}
$$

October 5, 2023
find eau of tan. line to the graph of

$$
\begin{aligned}
& f(x)=\frac{3 x}{2 x+1} \text { at } x=-1 . \\
& f(-1)=\frac{3(-1)}{2(-1)+1}=\frac{-3}{-1}=3 \\
& f(-1,3) \\
& f^{\prime}(x)=\frac{\frac{d}{d x}[3 x] \cdot(2 x+1)-3 x \cdot \frac{d}{d x}[2 x+1]}{(2 x+1)^{2}} \\
& =\frac{3(2 x+1)-3 x(2)}{(2 x+1)^{2}}=\frac{3}{(2 x+1)^{2}} \\
& y-y_{1}=m(x-x)=\frac{3}{1}=3 \\
& y-3=3(x--1) \quad y-3=3 x+3 \\
& y
\end{aligned}
$$

Oct 5-11:24 AM

